
Enterprise Application

Development

Sadegh Aliakbary

An Introduction to
Spring Framework

Outline

 Dependency Injection and IoC

 Aspect Oriented Programming

 Spring Framework

2 Spring FrameworkSadegh Aliakbary

Introduction to Spring Framework

Spring FrameworkSadegh Aliakbary3

 An open source Java platform

 Initially released under the Apache 2.0 license in
2003

 Spring is lightweight: the basic version = 2MB

 The core features can be used in any Java
application

 But there are extensions for web applications on top
of Java EE platform

 Spring targets to make J2EE development easier to
use

 Promote good programming practice

 By enabling a POJO-based programming model

About Spring

Spring FrameworkSadegh Aliakbary4

 Provides to create high performing, easily testable

and

 reusable code.

 is organized in a modular fashion

 simplifies java development

Spring Modules

Spring FrameworkSadegh Aliakbary5

 Spring is modular

 Allowing you to choose which modules are

applicable to you

 Provides about 20 modules

Spring FrameworkSadegh Aliakbary6

Two Key Components of Spring

Spring FrameworkSadegh Aliakbary7

 Dependency Injection (DI)

 Aspect Oriented Programming (AOP)

Dependency Injection (cont’d)

Spring FrameworkSadegh Aliakbary8

 application classes should be as independent as

possible

 To increase the possibility to reuse these classes

 and to test them independently

 Dependency: an association between two classes

 E.g., class A is dependent on class B

 Injection: class B will get injected into class A by the

IoC

 Dependency injection

 in the way of passing parameters to the constructor

 or by post-construction using setter methods

Library vs Framework

Spring FrameworkSadegh Aliakbary9

 Framework:

 Library:

Aspect Oriented Programming (AOP)

Spring FrameworkSadegh Aliakbary10

 cross-cutting concerns

 The functions that span multiple points of an application

 cross-cutting concerns are conceptually separate from

the application's business logic

 E.g., logging, declarative transactions, security, and caching

 The key unit of modularity

 in OOP: the class

 in AOP: the aspect.

 DI helps you decouple application objects from each

other

 AOP helps you decouple cross-cutting concerns from the

objects that they affect

Spring – Hello World

Spring FrameworkSadegh Aliakbary11

 Create your java project

 Simple application

 Web application

 Create source files

 Class of beans

 Create bean configuration file (XML)

 Retrieve beans

Source: Bean Classes

Spring FrameworkSadegh Aliakbary12

Bean Configuration File

Spring FrameworkSadegh Aliakbary13

Retrieve Beans

Spring FrameworkSadegh Aliakbary14

Spring Container

Spring FrameworkSadegh Aliakbary15

Spring Configuration Metadata

Spring FrameworkSadegh Aliakbary16

 XML based configuration file.

 Annotation-based configuration

 Java-based configuration

Spring Bean Definition

Spring FrameworkSadegh Aliakbary17

 class

 name (id)

 scope

 constructor-arg

 properties

 autowiring mode

 lazy-initialization mode

 initialization method
 A callback, invoked just after all properties on the bean have

been set

 For the sake of post-processing the bean creation

 destruction method
 A callback, invoked when the container is destroyed.

Spring Bean Scopes

Spring FrameworkSadegh Aliakbary18

 Common Scopes

 singleton

 prototype

 container creates new bean instance of the object every time a

request for that specific bean is made.

 Web-aware applications

 request

 session

 global-session

Dependency Injection

Spring FrameworkSadegh Aliakbary19

 Every java based application has a few objects that

work together

 In a complex Java application, application classes

should be as independent as possible

 To increase the possibility to reuse these classes

 and to test them independently

 Dependency Injection (or sometime called wiring)

helps in gluing these classes together

 and same time keeping them independent.

Example of a Dependency:

Spring FrameworkSadegh Aliakbary20

 What is wrong with this code?

 we have created a dependency between the

TextEditor and the SpellChecker concrete class

Solution

Spring FrameworkSadegh Aliakbary21

 inversion of control

 like this:

Dependency Injection Types

Spring FrameworkSadegh Aliakbary22

 Constructor-based dependency injection

 Setter-based dependency injection

Constructor-based dependency injection

Spring FrameworkSadegh Aliakbary23

Setter-based

Spring FrameworkSadegh Aliakbary24

Auto-wiring

Spring FrameworkSadegh Aliakbary25

 We can autowire relationships between collaborating

beans

 Without using <constructor-arg> or <property>

elements

 Decreases the amount of XML configuration you write

 Use the autowire attribute of the <bean/> element

 byName

 byType

 constructor

 If a bean is autowired

 Its properties are automatically set by other defined beans

Auto-wiring : byName

Spring FrameworkSadegh Aliakbary26

 Autowiring by property name.

 Spring looks at the properties of the beans on which

autowire attribute is set to byName

 Tries to match and wire its properties with the beans

defined by the same names

 If matches are not found, does nothing!

Annotation-based Configuration

Spring FrameworkSadegh Aliakbary27

 Since Spring 2.5

 to configure the dependency injection using
annotations

 instead of using XML to describe a bean wiring

 The bean configuration is specified in the class itself
by using annotations

 Annotation injection is performed before XML
injection

 thus the latter configuration will override the former

 Typical spring annotations

 @Component

 @Autowired

@Component
public class CustomerManager{
@Autowired
CustomerDAO customerDAO;

}

Spring and JSR-330 Standard

Spring FrameworkSadegh Aliakbary28

 Spring is not a javaee standard implementation

 Servlet, JSP, JPA, EJB, JAX-RS, … are java standards

 But javaee has a new standard for dependency

injection:

 JSR 330: Dependency Injection for Java.

 Since Spring 3.0, Spring supports the JSR 330

 @Inject instead of Spring’s @Autowired

 to inject a bean

 @Named instead of Spring’s @Component

 to declare a bean @Named("contactService")
public class ContactServiceImpl {
@Inject
ContactManager manager;

}

XML Approach

Spring FrameworkSadegh Aliakbary29

package ir.asta.training.contacts.dao;
public class ContactDao {

...
}

package ir.asta.training.contacts.manager;
import ir.asta.training.contacts.dao.ContactDao;
public class ContactManager {

ContactDao dao;
...

}

<bean id="contactManager"
class="ir.asta.training.contacts.manager.ContactManager">

<property name="dao" ref="contactDao" />
</bean>
<bean id="contactDao" class="ir.asta.training.contacts.dao.ContactDao" />

public static void main(String[] args){
ApplicationContext context = new ClassPathXmlApplicationContext("conf.xml");
ContactManager cust = (ContactManager)context.getBean("contactManager");

}

Auto scanning with XML Approach

Spring FrameworkSadegh Aliakbary30

package ir.asta.training.contacts.dao;
import javax.inject.Named;
@Named("contactDao")
public class ContactDao {

...
}

package ir.asta.training.contacts.manager;
import javax.inject.Inject;
import javax.inject.Named;
import ir.asta.training.contacts.dao.ContactDao;
@Named("contactManager")
public class ContactManager {

@Inject
ContactDao dao;
...

}

<context:component-scan base-package="ir.asta.training.contacts" />

public static void main(String[] args){
ApplicationContext context = new ClassPathXmlApplicationContext("conf.xml");
ContactManager cust = (ContactManager)context.getBean("contactManager");

}

Unit Testing of Spring Beans

Spring FrameworkSadegh Aliakbary31

public class ContactManagerTest {
@Test
public void testContactManager() {
ApplicationContext context =
new ClassPathXmlApplicationContext("config.xml");
ContactManager contactManager =
(ContactManager)context.getBean("contactManager");

//asserts
}

} @RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"config.xml"})
public class ContactManagerTest {

@Inject
ContactManager contactManager;

@Test
public void testContactManager() {

//asserts
}

}

Layered Architecture

Spring FrameworkSadegh Aliakbary32

 A layer is a group of reusable components

that are reusable in similar circumstances

 Common Layers:

 Presentation layer (UI, view)

 Service layer (web services)

 Manager layer (business logic, domain layer)

 Data access layer (DAO, persistence layer)

 Usually for each layer, the class instances

are declared as spring beans

 E.g., ContactDAO, ContactManager,

ContactService, etc.

Presentation

Layer

Service Layer

Manager Layer

DAO Layer

DB

Exercise

Spring FrameworkSadegh Aliakbary33

 Write a web application

 “Add” servlet for telephone contacts

 With all layers

 Dao  dummy implementation

 Manager  just delegate

 Servlet  Spring-enable your servlets

 How to spring-enable a servlet?!

 Define the beans and spring-enable your project

References and Material

Spring FrameworkSadegh Aliakbary34

 Spring Framework Reference Documentation

 http://www.springsource.org/documentation

 Spring Framework Tutorial

 www.tutorialspoint.com/spring/spring_tutorial.pdf

http://www.springsource.org/documentation
http://www.tutorialspoint.com/spring/spring_tutorial.pdf

35 Spring FrameworkSadegh Aliakbary

