INTERNET ENGINEERING

Sadegh Aliakbary

Advanced Material

Outline

- Information Retrieval
- » Data Mining
- » Data-warehouse & OLAP
- » Big Data and NoSQL Databases

INFORMATION RETRIEVAL AND

TEXT SEARCH

Information Retrieval (IR)

Process of retrieving documents From a collection

In response to a query by a user

Discipline that deals with the structure, analysis, organization, storage, searching, and retrieval of information

- >> Deals with Unstructured Data
- » Example: Google

>> User's information need:

>> Expressed as a free-form search request

» Example:

Internet Engineering "Internet Engineering" "Internet * Engineering" Java "Open Source" –apache

Types of Queries

- » Keywords
- » Phrases
- » Boolean Operators
- » Wildcards
- »...

Types of Search Engines

> Web Search Engines

>> Enterprise search systems

- » IR solutions for searching different entities in an enterprise's intranet
- » Applications?

Desktop search engines

» Retrieve files, folders, and different kinds of entities stored on the computer

Accuracy of Search

» Recall

 $recall = \frac{|\{relevant \ documents\} \cap \{retrieved \ documents\}|}{|\{relevant \ documents\}|}$

» Precision

 $\label{eq:precision} \ensuremath{\mathsf{precision}} = \frac{|\{\ensuremath{\mathsf{relevant documents}}\} \cap \{\ensuremath{\mathsf{retrieved documents}}\}|}{|\{\ensuremath{\mathsf{retrieved documents}}\}|}$

» F-score

Internet

» Single measure that combines precision and recall $F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Inverted Indexing

> How to effic > Vocabulary > Set of distin > Inverted in(> Data struct a list of all (

Document 1

This example shows an example of an inverted index.

Document 2

Inverted index is a data structure for associating terms to documents.

Document 2

Stock market index is used for capturing the sentiments of the financial market.

ID	Term	Document: position
1.	example	1:2, 1:5
2.	inverted	1:8, 2:1
3.	index	1:9, 2:2, 3:3
4.	market	3:2, 3:13

Overview of IR Concepts

- » Hyperlinks
- » Crawler
- » Vector Space Model » TF-IDF
- » Ranking
 - » Hubs and popular nodes
 - » PageRank, Hits, ...
- » NLP tasks
 - » Stop Words
 - » Stemming

Search Result Steps

- » Before Search
 - »Query Processing
- » After Search
 - » Classification & Clustering
 - »Query Expansion
 - »Query Suggestion
 - »Utilizing a Thesaurus: WordNet, ..

IR and Databsaes

- Support of text search in modern databases
 Oracle Text
 - » SQL Server Full-Text Search
- > (Non-standard) SQL-extensions to support text search
 - » Example:

select * from person where address like '%ولنجک%'

select * from person where geneder='male' AND CONTAINS (address, 'ولنجک')

- > Other Technologies (not in a DBMS)
 - » Lucene
 - » Solr
 - » Elastic Search

IR Summary

Information Retrieval Concepts

- »Query
- »Inverted Index
- » Crawler
- » ...
- IR and DatabasesIR Trends

DATA MINING

Data Mining

» Data is the Value

The value of many business are based on their gathered data

» Banks, Social Networks, Online Services, ...

Data Mining: Utilizing the value of the gathered data

Definitions of Data Mining

- The discovery of new information in terms of patterns or rules from vast amounts of data
- The process of finding non-trivial and interesting structure in data
- » Based on Intelligent Algorithms » Artificial Intelligence » Machine Learning

Knowledge Discovery in Databases (KDD)

- Data mining is actually one step of a larger process known as KDD
- The KDD process model comprises six phases
 Data selection
 - » Data cleansing
 - »Enrichment
 - » Enhances the data with additional sources of information
 - » Data transformation or encoding
 - » Data mining
 - » Reporting and displaying discovered knowledge

Types of Discovered Knowledge

- » Association Rules
- » Sequential Patterns
- » Classification
 - » Supervised Learning
- » Clustering
 - » Unsupervised Learning

Data Mining Methods

- » Decision Tree
- » K-Means
- » KNN

>>

» Neural Networks» SVM

Data Mining Applications

- » Classification?
 - » E.g., Customer Classification

» Clustering?

- »E.g., Search Results Clustering
- » Association Rule Mining?
 - » E.g., Product Suggestion

Data Mining and Databases

Database is the base of the invaluable data

Database and the Data Quality DB Constraints Clean Data : ready to be mined

Data Mining Modules in DBMSs »E.g., Oracle Data Mining

Data Mining Summary

- » Data Mining Concepts
- » Methods
- » Types of Knowledge
- » Data Mining and Databases

DATA WAREHOUSING AND OLAP

The Need to Datawarehousing

There is a great need for tools that provide decision makers with information to make decisions quickly and reliably based on historical data.

The above functionality is achieved by Data Warehousing and Online analytical processing (OLAP)

Purpose of Data Warehousing

The data warehouse users need only read access

But, they need the access to be fast over a large volume of data

The data in a data warehouse comes from multiple databases

The analysis are recurrent and predictable to be able to design specific software to meet the requirements

» KPI: Key Performance Indicators

Datawarehouse vs Database

» Datawarehouse:

» A subject-oriented, integrated, nonvolatile, time-variant collection of data in support of management's decisions

> An application-oriented, single, volatile, snapshot of data in support of a business operation

Applications of Datawarehouses

» OLAP

- » (Online Analytical Processing)
- » is a term used to describe the analysis of complex data from the data warehouse.

» DSS

- » (Decision Support Systems)
- » supports organization's leading decision makers for making complex and important decisions

» Data Mining

» is used for knowledge discovery, the process of searching data for unanticipated new knowledge.

OLTP vs OLAP

	OLTP	OLAP
Application	Operational: ERP, CRM, legacy apps,	Management Information System, Decision Support System
Typical users	Staff	Managers, Executives
Horizon	Weeks, Months	Years
Refresh	Immediate	Periodic
Data model	Entity-relationship	Multi-dimensional
Schema	Normalized	Star
Emphasis	Update	Retrieval

Conceptual Structure of Data Warehouse

Data Models in Datawarehouse

- » Denormalized Data
- Summarized Data

» Multi-Dimensional Data

- » In Data Cubes
- » Instead of data tables
- » Details are removed
 - » Those data not important for high-level reports

Data Modeling for Data Warehouses

» Example of Two- Dimensional vs. Multi-Dimensional

Data Cubes

Multi-dimensional Schemas

- » Multi-dimensional schemas are specified using:
 - » Dimension table
 - » It consists of tuples of attributes of the dimension.

» Fact table

- »Each tuple is a recorded fact.
- This fact contains some measured or observed variable (s)
- »identifies the measure with pointers to dimension tables.
- The fact table contains the data, and the dimensions to identify each tuple in the data.

Implementation of Datawarehouse

- Some DBMS vendors support datawarehousing and OLAP
 - » E.g., Oracle and MS SQL Server
- » Many datawarehouse technologies are built upon relational databases
 - »E.g., Pentaho
- Some datawarehouse technologies are built on NoSQL databases
 - » Suitable for big data

Exercise @ Class

> Work with Pivot Tables in Excel

»Pivot.xlsx

Summary: Datawarehousing

- Purpose of Data Warehousing
- » Definitions, and Terminology
- Comparison with Traditional Databases
- » Characteristics of data Warehouses
- » Multi-dimensional Schemas
- >> Functionality of a Data Warehouse

NOSQL DATABASES

Motivation

- Relational DBs Cannot Handle Big Data
 Relational DBs are good for structured data
 - >> With predefined structure
 - » And rare changes in the schema

» NoSQL:

» An attempt at using non-relational solutions

The NoSQL Movement

»NoSQL = Not Only SQL

- » It is not No SQL
- »Not only relational would have been better
- >> Use the right tools (DBs) for the job

Origins of NoSQL DBs

» Large scale web-based businesses » Google, Facebook, Amazon

» Open source technologies» Java-based technologies

Definition from nosql-databases.org

» Next Generation Databases mostly addressing some of the points: being **non**relational, distributed, opensource and horizontal scalable. The original intention has been modern webscale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply as: schemafree, easy replication support, simple API, eventually consistent /BASE (not ACID), a huge data amount, and more.

ACID and CAP

» Relational databases support ACID transactions

- » Atomic
- » Consistent
- » Isolated
- » Durable

» NoSQL DBs relax the conditions by CAP theorem

»CAP: if you want consistency, availability, and partition tolerance, you have to settle for two out of three

NoSQL Values

» Basic Availability

» The database appears to work most of the time

» Soft-state

- Stores don't have to be write-consistent, nor do different replicas have to be mutually consistent all the time
- The information will expire unless it is refreshed.

» Eventual consistency

» Stores exhibit consistency at some later point (e.g., lazily at read time).

BASE

» An alternative to ACID is BASE:

- » Basic Availability
- » Soft-state
- » Eventual consistency

Rather than requiring consistency after every transaction, it is enough for the database to eventually be in a consistent state.

» Not all use-cases need ACID transactions

Advantages of NoSQL

- » Cheap, easy to implement
- Data are replicated and can be partitioned
- » Easy to distribute
- » Don't require a schema
- Can scale up and down
- » Quickly process large amounts of data
- Relax the data consistency requirement (CAP)
- Can handle web-scale data, whereas Relational DBs cannot

Disadvantages of NoSQL

- New and sometimes buggy
- Data is generally duplicated, potential for inconsistency
- » No standardized schema
- » No standard format for queries
- » No standard language
- Difficult to impose complicated structures
- Depend on the application layer to enforce data integrity
- » No guarantee of support
- » Too many options, which one, or ones to pick

NoSQL Options

- » Key-Value Stores
- » Column Stores
- » Document Stores
- » Graph Stores

>>

Key-Value Stores

- Similar to a Hashmap
- »Put(key,value)
- > value = Get(key)
- » Examples
 - » Redis in memory store
 - » Memcached

Column Stores

» Not all entries are relevant each time » Column families

- » Examples
 - » Cassandra
 - »HBase (Hadoop ecosystem)
 - »Amazon SimpleDB

Document Stores

- » Key-document stores
 - » However the document can be seen as a value so you can consider this is a super-set of keyvalue
- » Big difference: in document stores one can query also on the document,
- > Examples >> MongoDB >> CouchDB

» Use a graph structure

- » Labeled, directed, attributed multi-graph
 - »Label for each edge
 - »Directed edges
 - »Multiple attributes per node
 - »Multiple edges between nodes
- »Relational DBs can model graphs, but an edge requires a join which is expensive

» Example: Neo4j

NoSQL: Summary

- The limitations of RDBMSs
- » Motivation for NoSQL
- » Definition
- » Applications of NoSQL» CAP theorem

