JPA

Java Persistence API

¢HHIBERNATE

Java Persistence API (JPA)
and Object Relational Mapping

Sadegh Aliakbary

Table of Contents J P A

Java Database Connectivity (JDBC) Java Persistence API
Object Relation Mapping ‘ H | B E R

Java Persistence API (JPA)

Entity Classes

DAO and Generic DAO patterns

Object Relations (Many-to-One, One-to-Many, Many-to-Many)

JPQL

Querying with the Criteria API

Test JPA and DAO classes using spring

JPA and Spring

Transaction Management (by Spring Transaction)

JPA www.asta.ir

Getting Ready

Start the Exercise Project

Review the Layers (Service, Manager, DAO)
Changes needed in Tomcat
Context.xm|
Deploying the Project
Running Tomcat

It will generate some DB tables, that we will use in this session...

JPA www.asta.ir

Java Database Connectivity (JDBC)

JDBC

JDBC API provides a standard database-independent interface to
interact with RDBMSs.
[Java Application_\ ©

JDBC

JDBC APl is used to L Database

connect a java application to a database

query the data, and/or update data.

Using JDBC API relieves you of the effort to learn specific protocols for
different databases

But the SQL syntax of different DBs may still differ

JPA www.asta.ir

JDBC Driver

The collection of implementation classes
that is supplied by a vendor
to interact with a specific database

The JDBC driver’ is used to connect to the RDBMS.

s usually delivered as a JAR file

E.g., Oracle JDBC driver, MySQL JDBC driver

JPA www.asta.ir

The Architecture of JDBC

JPA

Java Applications

{

JDBC APls
¢
JDBC Driver Manager
¢ ¢ ¢
JOBC Driver JDBC Driver JDBC Driver

(ODBC) (Oracle) (MySQL)

{ " '
0DBC Oracle MySQL

www.asta.ir

JDBC Example

//Class.forName("com.mysql.jdbc.Driver"); Now: Optional
String SQL = "SELECT * FROM classes”;
try (
Connection &onn = DriverManager.getConnection(
"jdbc:mysqgl://localhost/cse3330a",
"root", "123");
[Statement ﬁtmt = conn.createStatement();
[ResultSet qs = stmt.executeQuery(SQL)

) A

while (rs.next()) {
System.out.println(rs.getString("prof"));

¥
}

JPA www.asta.ir

JDBC

To connect to a database:

Obtain the JDBC driver class files (JAR)
add them to the CLASSPATH.

Construct a connection URL.

Use the static ‘getConnection()’ method of ‘DriverManager’ to
establish a connection.

Create statements on the connection

and execute SQL queries

JPA www.asta.ir

‘Statement’ interface

‘execute()’ method
is used to execute a SQL statement which does not return a value,
such as ‘CREATE TABLE’.
‘executeUpdate()’ method
is used for SQL that updates a database,
as in ‘INSERT’, ‘UPDATE’ and ‘DELETE’ SQL statements.
It returns the number of rows affected.
‘executeQuery()’
is used for SQL that produces a resultset,
as in ‘SELECT’ SQL statements.

JPA www.asta.ir

11

Commit & Rollback

The ‘auto-commit’ property for the ‘Connection’ object
is set to ‘true’ by default.
If a ‘Connection’ is not in auto-commit mode:

you must call the ‘commit()’ or ‘rollback()’ method of the
‘Connection’ object to commit or rollback the transaction

JPA www.asta.ir

12

AutoCommit

JPA

try {
Connection conn = get the connection..

conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
stmt.executeUpdate(sqll);
stmt.executeUpdate(sql2);

conn.commit();
conn.close();
}
catch (SQLException e){
conn.rollback();
e.printStackTrack();
conn.close();

¥

www.asta.ir

13

ResultSet Example

Connection conn = ..//get a Connection object ..
Statement stmt = conn.getStatement();
String sql = “select person _id, first name,”+
“last _name,dob,income from person”;

ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {

int personID=rs.getInt(1);

String firstName=rs.getString(2);

String lastName = rs.getString(3);

java.sql.Date dob = rs.getDate(4);

double income = rs.getDouble(5);

//do something with the retrieved values from the cols.

JPA www.asta.ir

Overview of JDBC Concepts

JDBC Driver
Connection
Statement
ResultSet

Commit & rollback

JPA www.asta.ir

15

JDBC Pros and Cons

Pros
Clean and simple SQL processing
Very good for small applications
Simple syntax =2 easy to learn

Cons
Complex if it is used in large projects
Large programming overhead
No encapsulation

Query is DBMS specific

JPA www.asta.ir

16

JDBC Exercise

Implement save and load methods in ContactDAO
Using JDBC

Add “age” field to ContactEntity
Revise the ContactDAO class

How much effort is needed?!

JPA www.asta.ir

17

Other Concepts in JDBC

PreparedStatement

And CallableStatement
RowSet

SQL Injection

JPA

www.asta.ir

18

Object Relational Mapping

Tables in REDEBMS
_ I
e Py

Objects in memory — —

ORM

What is ORM?

n relational databases:
ousiness entities are represented as tables + relationships

n object-oriented languages:
ousiness entities are represented as classes

Object relational mapping frameworks (ORMs) are used for:

mapping business entities to database tables

oL Relational

ORM

Programming

Database
Language

Framework

JPA www.asta.ir

20

ORM - Example

JPA

Students attend courses

Students (StudentsCourses) Courses
Studentld (PK) | Studentld (PFK) | —| Courseld (PK)
Name Courseld (PFK) Name
FacultyNumber

Student

Students attend courses

- studentid : int
-name : String
- facultyNumber : String
-courses : Set<Course>

Courses are composed of student

Course

1 *

+ Studentld : int
+ Name : String
+ FacultyNumber : String

+ Courses : Set<Course>

Courses have students

-courseld : int
-name : String
-students : Set<Student>

=

* 1

www.asta.ir

+Courseld : int
+ Name : String
+ Students : Set<Student>

21

Simple Scenarios (Pseudocode)

Person person = new Person(“Ali Alavi”, 22, “0078934563");

orm.save(person);

Person[] people = orm.loadAll(Person.class);

124

query = “SELECT from Student where instructor.dep.name="ce’ ”;

Entity[] found = orm.find(query);

How does an ORM framework work?

E.g., how does it find the corresponding table for Student class?

It needs some meta-information
Class-table correspondence

Field-column correspondence

What is the format of such meta-data?

XML or Annotations

JPA www.asta.ir

23

How does an ORM framework work? (cont’d)

Now the ORM framework knows that:
ir.hr.Person class corresponds to PERSON table

and Person.name field corresponds to FULL NAME column

How does it operate?
Suppose you want to write the ORM.save(Object o) method

How to implement save method?

Java Feature: Reflection

Reflection dynamically finds and manipulates classes and fields

JPA www.asta.ir 24

ORM Technologies

(Object-Relational Mapping) technologies

Map database tables to objects and enables CRUD operations, queries,
concurrency, transactions, etc.

Simplifies the development of DB applications

ORM in the Java world:
Java Persistence API (JPA) — the standard for ORM in Java
Hibernate — the most popular ORM library for Java (open source)

EclipseLink — ORM for Java by Eclipse foundation (open source)

JPA www.asta.ir 25

ORM In Java: Products and History

The first popular ORM framework in the Java world (2001)
Alternative to J2EE persistence technology called "EJB”

Belongs to JBoss (RedHat)

ORM for Java by Eclipse foundation

Maps classes to database, XML and Web services

JPA www.asta.ir

26

http://hibernate.org/orm/
https://eclipse.org/eclipselink/

ORM In Java: Products and History (2)

The official standard for ORM in Java and Java EE ()

Implemented by most Java ORMs like Hibernate ORM, EclipselLink,
OpenlPA, Apache JDO, Oracle TopLink, DataNucleus, ...

Hibernate also supports JPA

EclipseLink is the reference implementation

JPA www.asta.ir 27

https://jcp.org/aboutJava/communityprocess/final/jsr338/

History

Java v1.1 (1997) included JDBC
J2EE v1.2 (1999) introduced EJB Entity beans

Entity beans introduced, so others did it better
Hibernate (2001)

JPA V1.0 (.

JPA v2.0 (J

JPA

SR 220) was re
SR 317) was re

easSeC

€aseC

in 2006
in 2009

www.asta.ir

28

Introduction to JPA

|PA

Java Persistence API

About JPA

What is Java Persistence API (JPA)?

Database persistence technology for Java (official standard)
Object-relational mapping (ORM) technology
Operates with POJO entities with annotations or XML mappings
Implemented by many ORM engines: Hibernate, EclipselLink, ...
JPA maps Java classes to database tables

Maps relationships between tables as associations between classes

Provides CRUD functionality and queries

Create, read, update, delete + queries

JPA www.asta.ir 30

Entities in JPA

A JPA

is just a POJO class

(
Author

getBooks ()

Book

@RId
long id

1 getAuthor()

@Id

long id

String name

o J

The java classes corresponding to persistent aata

E.g., User, Author, Book, etc.

Name more?!

Non-final fields/properties, no-arguments constructor

No required interfaces

No requirement for business or callback interfaces

Direct field or property-based access

Getter/setter can contain logic (e.g. validation)

JPA

www.asta.ir

String title

31

The Minimal JPA Entity: Class Definition

Must be indicated as an Entity

annotation on the class:

@Entity
public class Employee {

}

JPA www.asta.ir

32

The Minimal JPA Entity: Primary Key

Must have a persistent identifier ():

@Entity
public class Employee {
@Id int id;

public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
}

JPA www.asta.ir

Primary Key (I1d) Definitions
Simple id — single field/property
@Id int id;
Compound id — multiple fields

@Id String firstName;
@Id String lastName;

JPA www.asta.ir

34

Primary Key ldentifier Generation

ldentifiers can be generated in the database
on the ID field

@Id @GeneratedValue int id;

Several pre-defined generation strategies:

IDENTITY. uses a data
SEQUENCE. uses a data

pase identity column

DasSe Sequence

AUTO. Either identity or sequence or ..

(depending on the underlying DB)

JPA

www.asta.ir

35

Simple Column Mappings

Mapping a class field to a database column:

@Entity

public class Message {
private String message;
public void setMessage(String msg) { message = msg; }
public String getMessage() { return message; }

}

A column name can be explicitly given:

private double salary;

JPA www.asta.ir

36

Example

JPA

@Entity

@Table (name = "ADDRESS")

public class Address implements Serializable {
@Id
@Column (name = "ID")
private Integer id;
@Column (name = "CITY")
private String city;
@Column (name = "STATE")
private String state;
@Column (name = "STREET")
private String street;
@Column (name = "ZIP")

private String zip;

37

Persistence Contexts and
EntityManager

EntityManagerFactory | EntityTransaction
EntityManager 'Z

it

Persistence Context (PC)

The

Holds a set of ” entity instances

Keyed by persistent identity (primary key)

Only one entity with a given persistent ID may exist in the PC
Managed by

The PC change as a result of operations on

JPA www.asta.ir

API

39

The EntityManager

Client-visi
API for a

ole object for operating on entities

| the basic persistence operations (CRUD)

Manages connection and transaction

Can think

JPA

of it as a proxy to a persistence context

| Chent

www.asta.ir

40

Persistence Context (PC) and Entities

JPA

Application

EntityManager

Persistence
Context

MyEntity A

MyEntity C

MyEntity B

Entities

Entity
state

www.asta.ir

41

Overview of PC

JPA

Entities are managed by an EntityManager instance using persistence
context

Each EntityManager instance is associated with a persistence context

Within the persistence context, the entity instances and their lifecycle
are managed

A persistence context is like a cache which contains a set of persistent
entities

So once the transaction is finished, all persistent objects are detached
from the EntityManager's persistence context and are no longer

managed

www.asta.ir

42

Operations on Entities

EntityManager API

persist () — persists given entity object into the DB
(SQL INSERT)

merge() — updates given entity in the DB
(SQL UPDATE)

remove () — deletes given entity into the DB
(SQL DELETE by PK)

JPA www.asta.ir

43

EntityManager.flush() method
flush()

~orces changes in the PC to be sent to the database

t is automatically called on transaction commit (but not vice
versa)

It does not call transaction commit. The transaction may be rolled-
back

Note:

Entitymanager.flush() vs EntityManager.getTransaction().commit

JPA www.asta.ir 44

Other EntityManager Operations

find () — execute a simple query by PK
(SQL SELECT by PK)

createQuery() —creates a query instance using dynamic JPQL
createNamedQuery()

Creates an instance for a predefined JPQL query
createNativeQuery()

Creates an instance for an SQL query

JPA www.asta.ir 45

EntityManager.persist()

Insert a new entity instance into the database

Save the persistent state of the entity and any owned relationship
references

Entity instance becomes managed

public Customer createCustomer(int id, String name) {
Customer cust = new Customer(id, name);
entityManager.persist(cust);
return cust;

JPA www.asta.ir

46

Updating an Entity

1- By just changing a managed™ entity
And committing the transaction
2- By invoking merge() over a detached™ entity

And committing the transaction

* Detached/Managed entities: described later

JPA www.asta.ir

47

find() and remove()

find()
Obtain a managed entity instance (SQL SELECT by PK)

Return null if not found
remove()

Delete a managed entity by PK

public void removeCustomer(Long custId) {
Customer cust = entityManager.find(Customer.class, custIld);
entityManager.remove(cust);

}

JPA www.asta.ir

48

N\
javax.persistence o
EntityManagerFactory : Entity Transaction
= - 'ﬁ i
Persistence 5 I | é
| Entity j Application Programming Interface
y

Creating Standalone JPA Applications

EntityManagerFactory Class

javax.persistence.EntityManagerFactory
Obtained by the Persistance

Creates EntityManager for a named
persistence unit or configuration

In Java SE environment the persistence unit configuration is
defined in the META-INF/persistence.xml file

JPA www.asta.ir

50

Sample Config: META-INF/persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0">
<persistence-unit name="hellojpa">
<class>model.Message</class>
<properties>
<property name="ConnectionURL"
value="jdbc:derby:messages-db;create=true"/>
<property name="ConnectionDriverName"
value="org.apache.derby.jdbc.EmbeddedDriver"/>
<property name="ConnectionUserName" value=""/>
<property name="ConnectionPassword" value=""/>
</properties>
</persistence-unit>
</persistence>

JPA www.asta.ir

51

Automatic Table Generation

JPA may be configured to automatically create the database
tables

During application deployment
Typically used during the development phase of a release,
not against a production database

javax.persistence.schema-generation.database.action property

Configures the behavior of JPA for table generation

JPA www.asta.ir

52

javax.persistence.schema-generation.database.action

<persistence ...>
<persistence-unit name="WISE'">

<properties>

<property name='"javax.persistence.schema-generation.database.action"
value="drop-and-create" />
</properties>
</persistence-unit>
</persistence>

Since JPA 2.1 (2013)

Possible values:

none, create, drop-and-create, ...

JPA www.asta.ir

53

JPA Bootstrap — Example

public class PersistenceExample {
public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("hellojpa”);
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();

// Perform finds, execute queries, update entities, etc.

em.getTransaction().commit();
em.close();
emf.close();

JPA www.asta.ir

54

JPA Configuration in Spring

JPA Configuration with Spring

Many things should be configured for JPA: For Example?!
Which JPA implementation is used?
Hibernate? EclipselLink?
Database Configuration
Which DBMS? Oracle? MySQL?
DB URL? User/pass?

Which packages should be scanned for entities?

How to manager Transactions?

How to inject an EntityManager into DAO classes?
Spring makes configurations easy

JPA www.asta.ir

56

Spring Configuration Example

<bean id="myEmf" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="dataSource" ref="dataSource" />
<property name="packagesToScan" value="ir.asta.training.contacts.entities" />
<property name="jpaVendorAdapter">
<bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter" />
</property>
<property name="jpaProperties">
<props>
<prop key="hibernate.nbm2ddl.auto">create-drop</prop>
<prop key="hibernate.dialect">org.hibernate.dialect. MySQL5Dialect</prop>

</props>
</pr2peprty> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
</bean> <property name="driverClassName" value="com.mysql.cj.jdbc.Driver" />

<property name="url" value="jdbc: ">
<property name="username" value="root" />
<property name="password" value="123" />

</bean>

<bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="myEmf" />
</bean>
IPA <tx:annotation-driven />

57

mysql://localhost:3306/spring_jpa

Now, With Spring We Can:

@Named("contactDao")
public class ContactDao {

@PersistenceContext
private EntityManager entityManager;

public void save(ContactEntity entity) {
entityManager.persist(entity);

¥

public void delete(ContactEntity entity) ({
entityManager.remove(entity);

¥

JPA www.asta.ir

58

Exercise on JPA and Spring

JPA

Review t

Review t

ne Layers

ne Spring configurations

www.asta.ir

59

DAO and Generic DAO Patterns

Layering
Enterprise applications usually are
divided into logical layers
Three-layer
Ul, Business Logic, Data
Four-Layer
Ul, Service, Business Logic, Data

Data Layer: Collection of classes related to
data access (DAO layer)

JPA www.asta.ir

61

Data Access Object Pattern (DAO)

JPA

creates
Client > DAO »
USes
\\\ lcreatﬂs
uses -
T TransferObject

DataSource

(Entity)

www.asta.ir

62

DAO

Abstracts the details of the underlying persistence mechanism

Hides the implementation details of the data source from its
clients

Loose coupling between core business logic and persistence
mechanism

JPA www.asta.ir

63

1. Write Entity Classes

@Entity @Table(name="WISE_CONTACT")
public class ContactEntity {
Long id;
String name;
@Id
@Column(name = "CONTACT_ID")
@GeneratedValue(strategy=GenerationType.AUTO)
public Long getId() {
return id;

}
public void setId(Long id) { this.id = id; }

@Basic(fetch=FetchType.EAGER)

@Column(name="NAME_")

public String getName() {
return name;

¥

public void setName(String name) { this.name = name; }

2. DAO implementations

@Named("contactDao")
public class ContactDao {

@PersistenceContext
private EntityManager entityManager;

public void save(ContactEntity entity) {
entityManager.persist(entity);

¥

public void delete(ContactEntity entity) ({
entityManager.remove(entity);

¥

JPA www.asta.ir

65

Generic DAO

The problem with many DAO implementations
Similar methods for

Load

Save, update, delete

Search
The solution?

A Generic DAO class

DAO implementation classes inherit from it

and implement the DAO interface

JPA www.asta.ir

66

Generic DAO Example

class AbstractJpaDAO<T extends BaseEntity<U>, U extends Serializable>{
@PersistenceContext

private EntityManager entityManager;

public void save(T entity) {
etityManager.persist(entity);

}

public T load(U id) {
return (T) etityManager.find(getEntityClass(), id);

¥
public abstract Class<T> getEntityClass() ;

//and find, search, update, many other methods.

}

public class ContactDao extends AbstractJpaDAO<ContactEntit, Long>{
public Class<ContactEntity> getEntityClass() {
return ContactEntity.class;

¥
¥

JPA www.asta.ir

67

Exercise on JPA Basics

Implement find method in ContactDAO
Using JPA

JPA www.asta.ir

68

Transaction Management
(by Spring Transaction)

Programmatic Transactions

public void save (ContactEntity entity)

EntityTransaction entityTransaction

entityManager.getTransaction () ;
entityTransaction.begin () ;

entityManager.persist (entity);

entityTransaction.commit () ;

JPA www.asta.ir

{

70

Using Spring @ Transactional

JPA

With Spring @Transactional, the transaction management is made simple

@Transactional
public void businessLogic () {
use entity manager 1inside a transaction

This declarative transactions are much more convenient and readable

To use declarative transactions, we should configure it:

<bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="myEmf" />
</bean>
<tx:annotation-driven />

www.asta.ir

71

Layering and Transactions »,

“ Methods of which layer become transactional?]
Presentation Layer

“ Manager

“ Why? Service Layer

Manager Layer

DAO Layer

H

JPA www.asta.ir 72

Exercise on JPA

Implement save method in ContactDAO
Using JPA
Note to Transactions

Add “email” field to ContactEntity
Revise the ContactDAO class
How much effort is needed?!

Compare it with the JDBC approach
Simulate an “account-transfer” method in Manager
Which invokes two dao methods in a transactional method
Test the transactionality! Does it roll-back?

JPA www.asta.ir 73

JPA Queries
Using JPQL

@ é

JPA Querles

JPA supports powerful querying API
Dynamic or statically defined (named queries)
Criteria using JPQL (Java Persistence APl Query Language)
SQL-like language
Native SQL support (when required)
Named parameters bound at execution time (no SQL injection)
Pagination and ability to restrict size of result
Single/multiple-entity results, data projections

Bulk update and delete operations on an entity

JPA www.asta.ir

75

JPA Query API

Query instances are obtained from factory methods on

EntityManager, e.g.

Query query = entityManager.createQuery(
"SELECT e from Employee e");

JPA query API:
getResultList () — execute query returning multip
getSingleResult () — execute query returning sing

executeUpdate() — execute bulk update or delete

JPA www.asta.ir

e resu

eresu

ts

76

JPA Query API (2)

JPA

setMaxResults() —set the maximum number of results to
retrieve

setFirstResult() - set the first result row
number (starting row in paginations)

setParameter() — bind a value to a named or positional
parameter

setFlushMode() — apply a flush mode to the query when it
gets run

www.asta.ir 77

Example: Pagination with JPQL

Query query = entityManager.createQuery(
pageNumber = 1,
pageSize = 10;
guery.setFirstResult((pageNumber-1) * pageSize);
guery.setMaxResults(pageSize);

List fooList = query.getResultList();

JPA www.asta.ir

78

Dynamic Queries — Example

Use createQuery () factory method at runtime

Pass in the JPQL query string
Get results by getResultList() / getSingleResult()

public List findAll(String entityName){
return entityManager.createQuery(
"select e from " + entityName + " e")
.setMaxResults(100)
.getResultList();

JPA www.asta.ir

79

JPQL Examples

Query query = em.createQuery("Select e FROM Employee e WHERE e.id = :id");
query.setParameter("id", id);
Employee result2 = (Employee)query.getSingleResult();

TypedQuery<Object[]> query = em.createQuery(

"SELECT c.name, c.capital.name FROM Country AS c", Object[].class);
List<Object[]> results = query.getResultList();
for (Object[] result : results) {

System.out.println("Country: " + result[0] + ", Capital: " + result[1l]);

}

JPA www.asta.ir

80

Named Queries

Named queries are once defined and invoked later many times

@NamedQuery(name="Sale.findByCustId",
query="select s from Sale s
where s.customer.id = :custId
order by s.salesDate")

public List findSalesByCustomer(Customer cust) {
return (List<Customer>)entityManager.
createNamedQuery("Sale.findByCustId")
.setParameter("custId", cust.getId())
.getResultList();

JPA www.asta.ir 81

Named Query Examples

@Entity

@NamedQuery (name="Country.findAll", query="SELECT c¢ FROM Country c")
public class Country {

}...

@Entity

@NamedQueries ({

@NamedQuery(name="Country.findAll", query="SELECT c¢ FROM Country c"),
@NamedQuery(name="Country.findByName",

query="SELECT ¢ FROM Country c WHERE c.name = :name"),

})
public class Country {

\ e

Exercise on JPA

Implement findAll method in ContactDAO
Using JPQL

Implement findByNamePrefix method in ContactDAO
Using JPQL ‘

Like expression . - W=

Y — = f] o Jloe

SELECT ¢ FROM Employee e WHERE p.name LIKE 'Mich$%

Parameterized: ... WHERE p.name LIKE :name||'%'

JPA www.asta.ir 83

Mapping Tables to Classes by
Annotations

0O/R Mapping

Object / Relational Mapping

JPA

Map persistent object state to relational database

Map relationships between entities

Metadata may be described as annotations or XML (or both)

Annotations

Descri

Descri

e t

e t

ne logical (object) model, e.g. @OneToMany

ne physical model (DB tables and columns), e.g. @Table

www.asta.ir

85

Simple Mappings

Direct mappings of fields to columns

@Basic — optional, indicates simple mapped attribute
Can specify fetch=EAGER / fetch=LAZY

LAZY: container defers loading until the field or property is accessed
(load on demand)

EAGER: the field or relationship loaded when the referencing entity is loaded
(pre-load)

Maps any of the common simple Java types
Primitives (1nt, long, String), wrappers, serializable, etc.
Used in conjunction with @Column

Can override any of the defaults

JPA www.asta.ir

86

Simple Mappings (Annotations)

JPA

@Entity
public class Customer {

@Id
int id;

@Basic @Column(name="name")

String name;

s

ID

NAME

CUSTOMER
CREDIT

PHOTO

>

@Basic @Column(name="CREDIT")

int creditRating;

@Lob
Image photo;

www.asta.ir

Simple Mappings (XML)

JPA

It is also possible to describe mappings by XML files

But we focus on annotation-based mappings

<entity class="model.Customer">
<attributes>
<id name="id" />
<basic name="name" />
<basic name="creditRating">
<column name="CREDIT" />
</basic>
<basic name="photo"><lob /></basic>
</attributes>
</entity>

www.asta.ir 88

Relationship Mappings

Cardinality:
@ManyToOne, @OneToOne — single entity
@OneToMany, @ManyToMany — collection
Direction (navigability):
Unidirectional: we can go from entity A to entity B only.
Bi-directional: we can go from entity A to entity B & vice-versa.
Owning and inverse sides
Owning side specifies the physical mapping
@JoinColumn to specify foreign key DB column
@JoinTable decouples physical relationship mappings from entity tables

JPA www.asta.ir 89

Many-To-One Mapping (Annotations)

@Entity
public class Sale ({ { SALE
ID

@Id

: : CUST_ID }
int 1d;

@ManyToOne
@JoinColumn(name="CUST_ID") L CUSTOMER }
Customer cust; ID

JPA www.asta.ir

90

One-To-Many Mapping (Attributes)

@Entity

public class Customer {
@Id
int (id;
@OneToMany(mappedBy="cust")
Set<Sale> sales;

}

@Entity

public class Sale {
@Id
int id;
@ManyToOne
Customer cust;

}

JPA www.asta.ir

CUSTOMER
ID
SALE }
ID CUST_ID)

91

Many-To-Many Example| @Entity

public class Project {

@Entity @Id

public class Employee { @Column(name="ID")
@Id private long id;
@Column(name="ID")
private long id; @ManyToMany(mappedBy="projects")
private List<Employee> employees;
@ManyToMany
@JoinTable(}

name="EMP_PROJ",

joinColumns=@JoinColumn(name="EMP_ID", referencedColumnName="ID"),

inverseJoinColumns=@JoinColumn(name="PROJ_ID", referencedColumnName="ID"))
private List<Project> projects;

JPA www.asta.ir

Bi-directional and Unidirectional Relationships

The relationship may be unidirectional

If one end does not need to use the relationship

Example: Unidirectional ManyToMany relationship:

@Entity 0* 0*)
public class Employee({ Employee & > PFOJECt
@Id
private Integer id;
@JoinTable (name = "PROJECT EMPLOYEE",
joinColumns={@JoinColumn (name="EMPLOYEES ID", @Entity
referencedColumnName="ID") }, inverseJoinColumns public class Project {
={@JoinColumn (name="PROJECTS ID", @Id

referencedColumnName = "ID") })
@ManyToMany
private List<Project> projectLlist;

JPA www.asta.ir

private Integer id;

93

Lazy Collection Fetching

A collection is fetched when the application invokes an
operation upon that collection

This is the default for collections
Fetch Types:
EAGER: Defines that data must be eagerly fetched
LAZY: Defines that data can be lazily fetched (Upon request)

Remind:

Properties (basic fields) can also be lazy loaded (But default is eager)

JPA www.asta.ir

94

Lazy Fetching Example

@Entity
public class ProductEntity {

@ManyToMany (fetch=FetchType.LAZY)

@ManyToMany (fetch=FetchType.EAGER)
private List<CategoryEntity> categories;

JPA

www.asta.ir

95

Cascade Strategies

Cascading Actions

Cascading of entity operations to related entities

may be defined per relationship

Configurable globally in the mapping files

By default no operations are cascaded.

Developers must do operations for relations of an entity

JPA www.asta.ir

Persisting Relationships

@Entity
@Table (name = "PHONE")
public class Phone implements Serializable {

@ManyToOne (cascade = CascadeType.ALL)
@JoinColumn (name = "EMPLOYEE ID", referencedColumnName = "ID")
private Employee employee;

Employee emp = new Employee(); // setters skipped
Phone phone = new Phone(); // setters skipped
phone.setEmployee (emp) ;

em.persist (phone);

// Consequently, em will also persist the Employee

JPA www.asta.ir

98

Cascade Types:

ALL

Cascade all operations
PERSIST

Cascade persist operation
MERGE

Cascade merge operation
REMOVE
REFRESH
DETACH

JPA

www.asta.ir

99

Exercise

Assume the relationships
Order [1-n] Item
ltem [n-1] Product
Product [n-n] Category
Define Entities

Add annotations

Set appropriate lazy/eager
Defines Services:
Add product (with a POST request to .../product/save)
With no category
Add Order
Add Item (.../add-item/23/12/3 =» Create an item: count=3, product_id=12, order-id=23)

JPA www.asta.ir 100

Exercise (cont’d)

Defines Services:

Add-product-item
...Jcategory/categoryname/productname
(Adds a product in a new category)

Does it work with no cascade?

No, results in an exception

Set appropriate Cascade type

JPA www.asta.ir 101

Bean Validation

Introduction to Bean Validation

Validating input received from the user
to maintain data integrity is an important part of application logic.
The Java API for JavaBean Validation ("Bean Validation")
provides a facility for validating objects
The Bean Validation model is supported by constraints in the form of annotations
Constraints can be built in or user defined.

User-defined constraints are called custom constraints

Integrated with JSF, JPA, CDI, JAX-RS, etc.

JPA www.asta.ir 103

Built-1n Bean Validation Constraints

m

@AssertFalse
boolean isUnsupported;

@AssertFalse The value of the field or property must be false.

@AssertTrue

Th I f the fiel . . .
@AssertTrue e value of the field or property must be true boolean isActive;

The value of the field or property must be a decimal
@DecimalMax value lower than or equal to the number in the value
element.

@DecimalMax("30.00")
BigDecimal discount;

The value of the field or property must be a decimal
@DecimalMin value greater than or equal to the number in the value
element.

@DecimalMin("5.00")
BigDecimal discount;

JPA www.asta.ir 104

Built-1n Bean Validation Constraints

m

The value of the field or property must be a number within a specified
range. The integer element specifies the maximum integral digits for the

@Digits(integer=6

Digit . g ,fraction=2
@Digits number, and the fraction element specifies the maximum fractional digits rac |o.n) .
for the number BigDecimal price;
. . @Future
F Th I f the fiel he f .
@Future e value of the field or property must be a date in the future Date eventDate:
@Max The value of the field or property must be an integer value lower than or @Max(10)
equal to the number in the value element. int quantity;
@Min The value of the field or property must be an integer value greater than or @Min(5)

equal to the number in the value element. int quantity;

JPA www.asta.ir 105

Built-1n Bean Validation Constraints

m

NotNull
@NotNull The value of the field or property must not be null. @ .Ot)
String username;
@Null The value of the field or property must be nuli @Null
property | String unusedString;
. . @Past
@Past The value of the field or property must be a date in the past.

Date birthday;

@Pattern(regexp="\\(\\d{3}\\)\\d
{3}-\\d{4}")

String phoneNumber;

The value of the field or property must match the regular

Pattern . . .
@ expression defined in the regexp element.

JPA www.asta.ir 106

Built-1n Bean Validation Constraints

m

The size of the field or property is evaluated and must match the
specified boundaries. If the field or property is a String, the size of
the string is evaluated. If the field or property is a Collection, the

@Size size of the Collection is evaluated. If the field or property is a Map,
the size of the Map is evaluated. If the field or property is an array,
the size of the array is evaluated. Use one of the optional max or
min elements to specify the boundaries.

@Size(min=2, max=240)
String briefMessage;

JPA www.asta.ir 107

Field Level Validation

public class Name ({
@NotNull
@Size (min=1, max=106)
private String firstname;
@NotNull
@Size (min=1, max=106)
private String lastname;

JPA www.asta.ir 108

Validating Constructors and Methods

public class Employee {
public Employee (@NotNull String name) { ... }

public void setSalary(
@NotNull
@Digits (integer = 6, fraction = 2) BigDecimal salary,
@NotNull
String currencyType) {

JPA www.asta.ir 109

summary

Declarative constraint management across application layers
Constraint
Restriction on a bean, field, property, method parameter, return value
Not null, between 10 and 45, valid email, etc
@Max, @Min, @Size, @NotNull, @Pattern, @Future, @Past
Custom constraints

Evaluated automatically

Integrated with JSF, JPA, CDI, JAX-RS

JPA www.asta.ir 110

Exercise

Set the following validation rules for contact entity

Age is a Required field
Age should be in the range [0,200]

Name contains no digits

JPA www.asta.ir 111

Managed vs Detached

Life cycle of Entity

new()

persist()
refresh()

managed

remove()
removed
persist()

Persistence
context
ends

JPA www.asta.ir 113

merge()

Managed Objects
A managed object is the one read in the current persistence context
The PC will track changes to every managed object

If the same object is read again in the same persistence context,
or traversed through another managed object's relationship,
the same identical (==) object will be returned.

Calling persist() on a new object will also make it become managed
Calling merge() on a detached object will return a managed copy

A removed object will no longer be managed

after a flush() or commit().

JPA www.asta.ir 114

Detached Objects

A detached object is one that is not managed in the current PC
This could be

an object read through a different persistence context

or an object that was cloned or serialized
A new object is also considered detached until persist() is called on it
An object that was removed and flushed or committed, will become detached
A managed object should only ever reference other managed objects
and a detached object should only reference other detached objects
Incorrectly relating managed and detached objects :

one of the most common problems users run into in JPA

JPA www.asta.ir 115

E ntltl eS L IfecyCI A managed entity instance A new entity instance has
——— - is associated with a no persistent identity, and

persistence context ’ is hotyet associated
[with a persistence context

I

I

1 #

I P

I ’

: MEWT)

1 refreshl) nersist(]

I

I

I

I FEMOVEL)

I >

I managed removed
LErsist))

|
|
A removed entity instance I,
has a persistent identity,
is associated with a
persistence context, and is
marked for rermaval fram
the database

detached

The state of the detached entity is 3“_“;_
propagated to the carresponding
managed entity in the given
entity manager. If a managed instance
does not exist, then itis loaded from
the database ar a new managed
instance is created

A detached entity instance has a persistent identity e
that is no longer associated with a persistence context.
An entity hecomes detached upon transaction commitiralliback,
ar if entity is passed by value, or entity manager is closed ar
cleared

merge() — synchronize the state of
pa detached entity with the PC Www.asta.ir 117

merge()
Merges the state of detached entity into a managed copy of the
detached entity
Returned entity has a different Java identity than the detached
entity

public Customer storeUpdatedCustomer(Customer cust) {
return (cust);

}

JPA www.asta.ir 118

Life cycle of Entity

New: The bean exists in the memory but is not mapped to
DB yet. It is not yet mapped to persistence context (via
entity manager)

Managed: The bean is mapped to the DB. The changes
effect the data in DB.

Detached: The bean is not mapped to the persistence
context anymore.

Removed: The bean is still mapped to the persistence
context and the DB, but it is programmed to be deleted.

JPA www.asta.ir 119

Life cycle of Entity

remove(): To delete the data

set(), get(): If the bean is in managed state, these methods
(of the entity bean) are used to access or modify the data.

persist(): To create the data. The bean goes to managed
state.

merge(): To take a bean from detached state to a managed
state.

JPA www.asta.ir 120

When will the JPA Entities become Detached?

JPA

When the transaction (in transaction-scoped persistence

context) commits, entities managed by the persistence context
become detached.

If an application-managed persistence context is closed, all
managed entities become detached.

Using clear method

using ¢

rollbac

etach method

K

www.asta.ir 121

Criteria APIs

Criteria API

The Java Persistence Criteria API

Defines dynamic queries
through the construction of object-based query definition objects
rather than use of the string-based approach of JPQL

Criteria APl allows dynamic queries to be built programmatically
offering better integration with the Java language
than a string-based approach

The Criteria APl was added in JPA 2.0

The Criteria API delete and update support was added in JPA 2.1

JPA www.asta.ir 123

Criteria API

JPA Criteria API provides an alternative way for defining JPA queries
type-safe way to express a query

Mainly useful for building dynamic queries

whose exact structure is only known at runtime

Allows developers to find, modify, and delete persistent entities
Similar to JPQL

The Criteria APl and JPQL are closely related

designed to allow similar operations in their queries.

JPA www.asta.ir 124

The First Example

Consider this simple Criteria query:

EntityManager em = ...;
CriteriaBuillder cb = em.getCriteriaBuilder () ;

Root<User> user = cqg.from(User.class);
cqg.select (user) ;

TypedQuery<User> g = em.createQuery (cq)
List<User> allUsers = g.getResultlist();

CriteriaQuery<User> cqg = cb.createQuery (User.class);

returns all instances of the User entity in the data source

The equivalent JPQL query is: SELECT u FROM User u

JPA www.asta.ir

125

JPQL vs Criteria API, an Example:

With JPQL:

List<User> users =
entityManager.createQuery("select e from User e").getResultList();

With criteria API:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder() ;
CriteriaQuery<User> cqg = cb.createQuery (User.class)
Root<User> user = cqg.from(User.class);

cqg.select (user) ;

TypedQuery<User> g = em.createQuery (cq)

List<User> allUsers = g.getResultList();

JPQL may look simpler, but criteria API has its own advantages

JPA www.asta.ir 126

CriteriaBuilder

A CriteriaBuilder is obtained from an EntityManager

CriteriaBuilder cb = entityManager.getCriteriaBuilder ()
CriteriaBuilder is used to construct CriteriaQuery objects and their expressions

CriteriaBuilder API:
createQuery() - Creates a CriteriaQuery
createQuery(Class): using generics to avoid casting the result class
createTupleQuery() - Creates a CriteriaQuery that returns map like Tuple objects
instead of object arrays for multiselect queries

createCriteriaDelete(Class) and createCriteriaUpdate(Class)
Creates a CriteriaDelete or CriteriaUpdate to delete/update a batch of objects (JPA 2.1)

CriteriaBuillder cb = entityManager.getCriteriaBuilder ()
CriteriaQuery<User> cg = cb.createQuery (User.class); .

JPA

CriteriaQuery API

(CriteriaQuery defines a database select query)

from(Class) : Defines an element in the query's from clause
At least one from element is required for the query to be valid
Returns a Root<EntityClass> instance
select(Selection): Defines the query's select clause
If not set, the first root will be selected by default
where(Expression), where(Predicate...) : Defines the where clause

By default all instances of the class are selected.

JPA www.asta.ir 128

CriteriaQuery Example

CriteriaBuilder cb = ...;
CriteriaQuery<User> cqg = cb.createQuery (User.class);
Root<User> user = cqg.from(User.class);

cqg.select (user) ;
criteriaQuery.where (cb.greaterThan (user.get ("age"), 18));

CriteriaQuery<CategoryEntity> cq = cb.createQuery(CategoryEntity.class);
Root<CategoryEntity> cat = cq.from(CategoryEntity.class);
cg.select(cat);

Predicate pred = cb.like(cat.get("name"), "Laptop%");

cqg.where(pred);

Predicate like = cb.like(cat.get("name"), "Lap%");

Predicate idgt = cb.greaterThan(cat.get("id"), 5);
Predicate and = cb.and(like, idgt);
cg.where(and);

JPA www.asta.ir 129

Other CriteriaQuery API

distinct(boolean): filter duplicate results (defaults to false)
orderBy(Order...), orderBy(List<Order>): the order clause

By default the results are not ordered
groupBy(Expression...), groupBy(List<Expression>)

Defines the query's group by clause

By default the results are not grouped.

having(Expression), having(Predicate...): the having clause

Having allows grouped results to be filtered.

JPA www.asta.ir 130

Multiple Selects in One CriteriaQuery

Calls to the from() method are additive
Each call adds another root to the query

resulting in a Cartesian product

if no further constraints are applied in the WHERE clause
CriteriaQuery<Department> ¢ = cb.createQuery (Department.class);
Root<Department> dept = c.from(Department.class);
Root<Employee> emp = c.from(Employee.class) ;
c.select (dept)
.distinct (true)
.where (cb.equal (dept, emp.get ("department")));

SELECT DISTINCT d FROM Department d, Employee e WHERE d = e.department

JPA www.asta.ir 131

Path Expressions

The path expression is the key to the power and flexibility of the JPQL language
And it is likewise a central piece of the Criteria API
Roots are actually just a special type of path expression

The get() method is equivalent to the dot operator used in JPQL path expressions
CriteriaQuery<Employee> ¢ = cb.createQuery (Employee.class)
Root<Employee> emp = c.from(Employee.class);

c.select (emp)
.where (cb.equal (emp.get ("address") .get ("ecaity"), "Yazd")):;

SELECT ¢ FROM Employee e WHERE e.address.city = 'Yazd'

JPA www.asta.ir 132

Basic Structure

JPA

JPQL Clause Criteria APl Method

SELECT
FROM
WHERE
ORDER BY
GROUP BY
HAVING

select()
from()
where()
orderBy()

groupBy()
having()

www.asta.ir

133

Building Expressions

JPQL Operator CriteriaBuilder Method

AND and()

OR or()

NOT not()

= equal()

<> notEqual()
> gt()

>= ge()

< It()

<= le()

JPA www.asta.ir 134

Building Expressions

JPQL Operator CriteriaBuilder Method

JPA

EXISTS
NOT EXISTS
IS EMPTY

IS NOT EMPTY

LIKE

NOT LIKE
BETWEEN

IN

NOT IN

IS NULL

IS NOT NULL

exist()
not(exist())
iISEmpty()
isNotEmpty()
lik()
notLike()
between()
in()
not(in())
isNull()
isNotNull()

135

Building Expressions

JPQL Operator CriteriaBuilder Method

JPA

AVG

MIN

MAX

COUNT

COUNT DISTINCT
LOWER

UPPER

CONCAT
CURRENT_TIME

avg()

min()

max()

count()
countDistinct()
lower()
upper()
concat()

currentTime()

www.asta.ir

136

In Expressions Example

CriteriaQuery<Employee> c = cb.createQuery (Employee.class) ;

Root<Employee> emp = c.from(Employee.class);
c.select (emp)
.where (emp.get ("address")

JPA

.get ("state")

. in ("Yazd" , "QOm")) S

SELECT e FROM Employee e
WHERE c¢.address.state IN

('Yazd',

'Qom ')

www.asta.ir

137

Join SELECT p FROM Teacher t JOIN t.phones p

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Phone> query = cb.createQuery(Phone.class);
Root<Teacher> teacher = query.from(Teacher.class);
Join<Teacher, Phone> phones = teacher.join("phones");

guery.select(phones).where(cb.equal(teacher.get("firstName"), "Sadegh"));

teacher.join("phones") creates a join
on the collection field named phones
Variable phones is similar to the p variable

that represents join in JPQL

JPA www.asta.ir 138

Multiselect

CriteriaQuery criteriaQuery = criteriaBuilder.createQuery();

Root employee = criteriaQuery.from(Employee.class);
criteriaQuery.multiselect(employee.get("firstName"), employee.get("lastName"));
Query query = entityManager.createQuery(criteriaQuery);

List<Object[]> result = query.getResultList();

JPA www.asta.ir 139

Parameters in Criteria API

CriteriaBuilder cb = entityManager.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Employee> employee = cq.from(Employee.class);
criteriaQuery.where(
cb.equal(employee.get("firstName"),
cb.parameter(String.class, "first")),
cb.equal(employee.get("lastName"),
cb.parameter(String.class, "last"))
)
Query query = entityManager.createQuery(cq);
query.setParameter("first", "Bob");
query.setParameter("last"”, "Smith");
List<Employee> = query.getResultList();

JPA www.asta.ir

140

The ORDER BY Clause

The orderBy() method

Accepts one or more Order objects

created by the asc() and desc() methods of CriteriaBuilder

CriteriaQuery<Employee> c = cb.createQuery (Employee.class);
Root<Employee> emp = c.from(Employee.class)
c.orderBy (cb.desc (emp.get ("name")), cb.asc(emp.get("age")));

SELECT ¢ ROM Employee e
ORDER BY d.name DESC, d.age ASC

JPA www.asta.ir 141

The GROUP BY and HAVING Clauses

CriteriaQuery<Object[]> ¢ = cb.createQuery(Object[].class);

Root<Employee> emp = c.from(Employee.class)
Join<Employee, Project> project = emp.join ("projects");
c.multiselect (emp, cb.count (project))

.groupBy (emp)

.having (cb.ge (cb.count (project),2));

SELECT e, COUNT (p)
FROM Employee e JOIN e.projects p
GROUP BY e HAVING COUNT (p) >= 2

JPA www.asta.ir

142

Bulk Update and Delete

CriteriaUpdate<Employee> g = cb.createCriterialUpdate (Employee.class);
Root<Employee> emp = g.from(Employee.class);
q.set (emp.get ("salary"), cb.sum(emp.get ("salary"), 5000))

.where (cb.lt(emp.get("salary"), 1000000));

UPDATE Employee e SET e.salary = e.salary + 5000 WHERE e.salary<l1000000

CriteriaDelete<Employee> g = cb.createCriteriaDelete (Employee.class)
Root<Employee> emp = g.from(Employee.class);
g.where (cb.1sNull (emp.get ("dept"))) ;

DELETE FROM Employee e WHERE e.department IS NULL

JPA www.asta.ir 143

JPQL vs Criteria API

JPQL queries are defined as strings, similarly to SQL
JPA criteria queries are defined by instantiation of Java objects

The criteria API: errors can be detected earlier
during compilation rather than at runtime

For many developers string based JPQL queries are easier to use and understand
JPQL queries are similar to SQL queries

For simple static queries: string based JPQL queries may be preferred

For dynamic queries that are built at runtime: the criteria APl may be preferred
E.g., building a dynamic query based on fields that a user fills at runtime
in a form that contains many optional fields
cleaner when using the JPA criteria APl because it eliminates many string concatenations

JPQL and JPA criteria based queries are equivalent in power

JPA www.asta.ir 144

Exercise

-irst, fill some items and products into the DB

Defines Services:
Select product-name of items of an order with quantity>param

.../min-items/order-id/min-quantity

JPA www.asta.ir 145

Appropriate inheritance
strategies

1- Mapped Superclass Strategy

It maps each concrete class to its own table

A mapped superclass is not an entity, and there is no table for it

@MappedSuperclass
public abstract class Publication {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

@Column(name = "id")

protected Long id; @Entity(name = “Book™)

. o public class Book extends Publication {
} @Column

private int pages;

JPA }

www.asta.ir 147

2- Table per Class Strategy

Similar to the mapped superclass strategy

But the superclass is now also an entity
Each of the concrete classes gets still mapped to its own table

This mapping allows you to use polymorphic queries

and to define relationships to the superclass
@Entity
@Inheritance(strategy = InheritanceType.TABLE PER_CLASS)
public abstract class Publication {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
@Column(name = “id”)

protected Long id;

JPA 148

3- Single Table Strategy
It maps all entities of the inheritance structure to the same table

@Entity

@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@DiscriminatorColumn(name = “Publication_ Type™)
public abstract class Publication {...}

JPA www.asta.ir 149

4- Joined Strategy

It maps

Event

The tab

each class of the inheritance hierarchy to its own table

ne parent class

es of the subclasses are much smaller

They hold only the columns specific for the mapped entity class

and a primary key with the same value as the record in the table

of the

JPA

superclass.

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Publication {

www.asta.ir 150

Choosing a Strategy

JPA

1- Mapped Superclass Strategy
2- Table per Class Strategy

3- Single Table Strategy

4- Joined Strategy

www.asta.ir

151

The End

